您好!欢迎访问中国科学院西双版纳热带植物园研究组网站! 2022/04/06 上午9:17:24 星期三

中国科学院西双版纳热带植物园植物基因组演化与次生代谢研究组隶属于中国科学院热带植物资源可持续利用重点实验室。课题组成立于2022年6月1日,杨永平研究员为植物基因组演化与次生代谢研究组组长。现在课题组成员有研究员1人,返聘研究员1人,副研究员1人,在站博士后2人,在读博士研究生8人(含联合培养),硕士研究生5人(含联合培养)。

Our group belongs to one of the two key laboratories under Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences (XTBG-CAS), the Key Laboratory of Sustainable Utilization of Tropical Plant Resources. This research group was recently established on June 1, 2022 under the leadership of professor Yang Yongping as the group leader. At present, our group consists of one professor, one re-employed (after retirement) professor, one associate professor, two postdoctoral  fellows, heigh PhD students and 25 master degree students(including collaborative students). 

研究组方向:植物基因组演化与次生代谢

研究定位:聚焦热带资源植物,通过基因组测序和比较基因组学及代谢组学,研究植物次生产物合成的遗传调控机制,挖掘关键基因或基因簇,验证基因功能和次生代谢产物的生物学意义,并开展重要活性化合物的生物合成研究。

研究思路:次生代谢产物是植物参与防御等生命和生态过程的产物,其合成的过程受基因和环境压力双重调控,是植物长期演化的结果。研究聚焦一些市场有需求、功效明确的代谢产物,运用比较基因组学和代谢组学的技术,分析和揭示代谢产物的合成通路及其关键基因调控机制。基于基因组演化和适应性研究,阐明次生代谢产物的生物学意义。利用基因编辑和微生物工程技术,开展重要活性化合物的生物合成研究。

工作内容:主要以九里香(Murraya paniculata)、依兰(Canaga ordorata)、细毛樟(Cinnamomum tenuipile)、臭味假柴龙树(Nothapodytes nimmoniana)以及蔓菁(Brassica rapa var. rapa)等为研究材料,利用基因组测序、群体遗传学、代谢组测定和分子生物学等研究手段,(1)揭示九里香的苯乙醛合成、依兰的精油合成、臭味假柴龙树的喜树碱合成、细毛樟的芳樟醇合成的分子调控机制及生物学意义;(2)评价蔓菁不同地方品种芥子油苷的含量,通过构建蔓菁泛基因组及变异集合、蔓菁重测序及全基因组关联分析研究,解析蔓菁高萝卜硫苷品种的遗传基础,应用传统育种方式或基因编辑手段培育蔓菁高萝卜硫苷品种。

Direction: Our research group focuses on plant genome evolution and secondary metabolism.

Scientific research focus: Our research team employs tropical resource plants as research materials to investigate the genetic regulation mechanism of plant secondary production synthesis through genomics, comparative genomics and metabolomics. We aimed: 

· To search for key genes or gene clusters in the metabolic pathway.

· To verify the function of genes, to explore the biological significance of gene function and secondary metabolites.

· To study the biosynthesis of active compounds.

Core research ideas: Secondary metabolites are the products of plant resistance to other organisms or reacting to ecological processes. Their synthesis process is controlled by gene, environmental pressure, and are considered as a result of plant long-term evolution outcomes. We examine metabolites that show clear market demand and efficacy, and employ comparative genomics and metabolomics to analyze unravel the metabolic pathway as well as their key gene regulation mechanisms. We search for genome evolution and adaptability to explain the biological significance of secondary metabolites. For achieving our research goals, we make use of cutting-edge technologies and tools such as CRISPR/Cas9 and microbial engineering to provide a basis for the biosynthesis of important active compounds.

Research content and materials:

· Materials: the following plants species are our target materials so far Murraya paniculata, Canaga ordorata, Cinnamomum tenuipile, Nothapodytes nimmoniana, Brassica rapa var. rapa. 

· Method: Genome sequencing, Population genetics, Metabolomic determination, Molecular biology

· Objectives: 1. To reveal the molecular regulating mechanism and biological significance of phenylacetaldehyde synthesis from Murraya paniculata, essential oil synthesis from Canaga ordorata, camptothecin synthesis from Nothapodytes nimmoniana, and linalool synthesis from Cinnamomum tenuipile. 2. To evaluate the content of glucosinolates in different local varieties of turnip, through the construction of turnip pan-genome and variation set, the resequencing of turnip and genome-wide association study (GWAS). 3. To analyze the genetic basis of high content glucoraphan in varieties in turnip, and to cultivate high content glucoraphanin varieties in turnip with traditional breeding or CRISPR/Cas9.