
Limonoids from the Leaves and Twigs of Walsura yunnanensis

Kai-Long Ji, †,‡ Ping Zhang,† Hua-Bin Hu,† Shuai Hua,† Shang-Gao Liao,*,§ and You-Kai Xu*,†

[†]Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, People's Republic of China

Supporting Information

ABSTRACT: Nine new cedrelone limonoids, namely, walsuranolide B (1), 11β -hydroxy-23-O-methylwalsuranolide (2), yunnanolide A (3), yunnanol A (4), 11β -hydroxyisowalsuranolide (5), 11β -hydroxy-1,2-dihydroisowalsuranolide (6), 1α ,11 β -dihydroxy-1,2-dihydroisowalsuranolide (7), 11β -hydroxy-1 α -methoxy-1,2-dihydroisowalsuranolide (8), and yunnanolide B (9), together with a new cycloartane triterpenoid, (24S*,25R*)-cycloartane-3 β ,24,25,26-tetrol (10), were iso-

lated from the leaves and twigs of *Walsura yunnanensis*. Their structures were elucidated on the basis of spectroscopic analysis and by comparison with literature data. Compounds 3 and 5 exhibited potent cytotoxicity against five human tumor cell lines with IC_{50} values in the range 2.2–4.2 μ M.

eliaceous limonoids have attracted interest due to their diverse structures and biological activities, such as insect antifeedant, antimalarial, cytotoxic, and 11β -HSD1 inhibitory effects. 1,2 The genus Walsura Roxb. (Meliaceae), comprising 30 to 40 species, is distributed primarily in mainland China, India, Malaysia, and Indonesia.³ Chemical studies conducted in the past decade have shown that this genus is rich in biologically active limonoids. Walsura yunnanensis C. Y. Wu is endemic to the Xishuangbanna region of Yunnan Province, People's Republic of China.³ Earlier investigations have shown the presence of limonoids and phenolic compounds. ^{2a,4} In a continuing study of the medicinal plants of Xishuangbanna for biologically active secondary metabolites, the leaves and twigs of W. yunnanensis were investigated. As a result, 10 new compounds (1-10) were isolated. This report describes the extraction, isolation, structure elucidation, and cytotoxicity evaluation of these compounds.

■ RESULTS AND DISCUSSION

The leaves and twigs of *W. yunnanensis* were extracted three times with 95% EtOH. After removing the solvent, the ethanol extracts were suspended in water and then partitioned successively with petroleum ether, EtOAc, and *n*-BuOH. The EtOAc-soluble fraction was purified by column chromatography to produce nine new cedrelone limonoids (1–9) and one new cycloartane triterpenoid (10).

Compound 1 was obtained as colorless needles (CHCl₃). Its HREIMS showed a molecular ion peak at m/z 454.1986 [M]⁺ (calcd 454.1992), consistent with a molecular formula of $C_{26}H_{30}O_7$, with 16 mass units more than that of the known compound 11β -hydroxycedrelone, isolated from the same

plant.^{2a} The NMR data of **1** (Tables 1 and 2) were very close to those reported for 11 β -hydroxycedrelone, with the only difference being the replacement of signals for the furan ring ($\delta_{\rm H}$ 7.35 (d, J = 1.5 Hz), 7.15 and 6.15 s; $\delta_{\rm C}$ 122.7, 139.5, 110.5, and 143.2) by those for an α , β -unsaturated- γ -lactone ring⁵ [$\delta_{\rm H}$ 4.71 (2H, m) and 7.13 (1H, s); $\delta_{\rm C}$ 71.2, 133.3, 149.0, and 174.6] in **1**. This conclusion was confirmed by the HMBC correlations between H-17/C-21 and H-23/C-21 as well as the ROESY correlations between H-11/H-9 and H-9/H₃-18. Thus,

Received: November 23, 2013

[‡]University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

[§]Engineering Research Center for the Development and Application of Ethnic Medicines and TCM, School of Pharmacy, Guiyang Medical College, Guiyang, Guizhou 550004, People's Republic of China

Journal of Natural Products

Table 1. ¹H NMR Spectroscopic Data of Compounds 1-5^a

	1^b	2^c	3^b	4 ^c	5^b
proton position	(mult., J in Hz)	(mult., J in Hz)	(mult., J in Hz)	(mult., J in Hz)	(mult., J in Hz)
1	7.28, d (10.0)	7.30, d (10.0)	7.32, d (10.0)	7.24 ^f	7.32, d (10.0)
2	6.29, d (10.0)	6.30, d (10.0)	6.33, d (10.0)	6.30, d (9.8)	6.31, d (10.0)
9	2.85, s	2.82, s	2.85, s	3.02, s	2.86, s
11	5.04, d (6.3)	5.04, m	5.03, m ^f	5.02, m	5.12, d (6.0)
12α	2.26, dd (15.1, 6.3)	2.20, dd (15.2, 6.2)	2.36, dd (15.0, 5.8)	2.93, dd (15.0, 6.2)	2.34, dd (14.5, 6.0)
12β	2.95, d (15.1)	2.91, d (15.2)	2.30, d (15.0)	2.57, d (15.0)	2.81, d (14.5)
15	4.08, s	4.08, s	4.08, s	4.20, s	4.11, s
16α	2.04, m	2.05, dd (13.3, 11.1)	1.95, dd (13.3, 11.6)	2.56, m	2.06, m
16β	2.14, dd (13.5, 6.5)	2.15, dd (13.3, 6.4)	2.19, dd (13.3, 6.5)	2.25, dd (13.2, 6.2)	2.17, dd (13.4, 6.4)
17	3.02, m	2.98, m	2.64, dd (10.8, 6.5)	2.68, dd (10.7, 6.2)	3.26, dd (10.3, 6.4)
18	0.92, 3	0.90, s	1.05, s	1.70, s	1.01, s
19	1.81, s	1.81, s	1.80, s	1.79, s	1.82, s
21			5.30, s	5.06, s	6.43, s
22	7.13, s	7.01, s	5.73, s	4.65, dd (6.5, 4.4)	6.09, s
23	4.71, m ^d	5.93, s	5.77, s	5.45, d (4.4)	
28	1.88, s ^e	1.87, s	1.892, s	1.89, s	1.878, s
29	1.88, s ^e	1.88, s	1.888, s	1.88, s	1.884, s
30	1.78, s	1.78, s	1.75, s	1.77, s	1.78, s
OMe-21			3.40, s	3.39, s	
OMe-23		3.41, s	3.36, s	3.43, s	

^aRecorded in C_5D_5N . ^bRecorded at 500 MHz. ^cRecorded at 600 MHz. ^dDouble protons. ^eOverlapped by other signal. ^fOverlapped by solvent signal.

the structure of 1 was elucidated as depicted, and this compound has been named walsuranolide B.

Compound **2** was assigned a molecular formula of $C_{27}H_{32}O_8$ on the basis of its HREIMS, or 30 mass units greater than that of **1**. The NMR data of **2** differed from those of **1** (Tables 1 and 2) only in the absence of signals for the oxymethylene (CH₂-23; δ_H 4.71, 2H, m; δ_C 71.2) in the α , β -unsaturated- γ -lactone ring and the presence of signals for dioxymethine [δ_H 5.93 (1H, s); δ_C 103.2] and methoxy (δ_H 3.41, 3H, s; δ_C 56.4) groups. The methoxy group was revealed to be located at C-23 by the HMBC correlation between OCH₃-23 and C-23, although its relative configuration remains undetermined. Further 2D NMR spectroscopic data analysis confirmed this assignment and was used to establish the structure of **2** as the 11 β -hydroxy-23-O-methyl derivative of walsuranolide, 11 β -hydroxy-23-O-methyl-walsuranolide.

Compound 3 was obtained as colorless needles (CHCl₃). Its molecular formula, $C_{28}H_{36}O_{8}$, was established by the HREIMS peak at m/z 500.2413 [M]⁺ (calcd 500.2410), or 16 mass units greater than that of compound 2. Comparison of its ¹H and ¹³C NMR data (Tables 1 and 2) suggested that 3 differs only in the replacement of the ester carbonyl ($\delta_{\rm C}$ 171.6, C-21) in 2 by a methoxymethine ($\delta_{\rm H}$ 5.30, $\delta_{\rm C}$ 109.7, CH-21; $\delta_{\rm H}$ 3.40, $\delta_{\rm C}$ 55.6, OMe-21). The ROESY correlations between H₃-18/H-23 and H-21/H-17 indicated H-23 and H-21 to be α - and β -oriented, respectively. Therefore, the structure of compound 3 was established as shown, and this compound has been named yunnanolide A.

The molecular formula of compound 4 was determined to be $C_{28}H_{38}O_{10}$ from its molecular ion peak at m/z 534.2467 [M]⁺ (calcd 534.2465) in the HREIMS, 34 mass units more than that of 3. The 1D NMR data of 4 resembled closely those of 3 (Tables 1 and 2), except for the absence of signals for a $\Delta^{20,22}$ double bond and the presence of signals for an oxymethine ($\delta_{\rm H}$ 4.65, dd, J=6.5, 4.4 Hz; $\delta_{\rm C}$ 79.1; CH-22) and an oxygenated quaternary carbon ($\delta_{\rm C}$ 82.3, C-20). These observations suggested 4 to be the 20,22-dihydroxy-20,22-dihydro derivative

of 3. The $^{1}\text{H}-^{1}\text{H}$ COSY correlation between H-22 and H-23 as well as the HMBC correlations between H₂-16/C-20, H-21/C-17, H-21/C-23, OCH₃-21/C-21, and OCH₃-23/C-23 (Figure S25, Supporting Information) confirmed this inference. The ROESY correlations between H-17/H-21 and H-17/H-22 indicated that H-21 and H-22 are β -oriented, while the absence of any ROESY correlation between H-23 and H-21 was consistent with the presence of a H-23 α substituent. The structure of 4 (yunnanol A) was thus established as shown.

Compound **5** was obtained as a crystalline solid (CHCl₃). Its molecular formula, $C_{26}H_{30}O_{8}$, was established by the HREIMS peak at m/z 470.1951 [M]⁺ (calcd 470.1941), showing 16 mass units more than that of isowalsuranolide isolated previously from this plant.^{2a} The ¹H and ¹³C NMR data of **5** (Tables 1 and 2) were very similar to those of isowalsuranolide, with a major difference being the replacement of signals for a methylene ($\delta_{\rm C}$ 19.6) in isowalsuranolide by those for an oxymethine ($\delta_{\rm H}$ 5.12, d, J=6.0 Hz; $\delta_{\rm C}$ 66.4). These observations suggested that **5** is the 11-hydroxy derivative of isowalsuranolide, and the doublet for H-11 and a singlet for H-9 indicated a cis relationship between H-9 and H-11.^{2a} Thus, the structure of **5** was deduced as 11β -hydroxyisowalsuranolide.

Compound **6** was obtained as colorless needles (CHCl₃). Its HREIMS revealed a molecular ion peak at m/z 472.2081 [M]⁺ (calcd 472.2097), consistent with a molecular formula of $C_{26}H_{32}O_8$, having two mass units more than that of compound 5. The ¹H and ¹³C NMR data of **6** (Tables 2 and 3) were very similar to those of **5**. Differences between the two compounds were the absence of signals for the $\Delta^{1,2}$ double bond and the presence of signals for two additional sp³ methylenes (δ_C 36.2 and 33.6) in **6**. This compound was therefore assigned as a 1,2-dihydro derivative of **5**. Further 2D NMR spectroscopic data analysis confirmed the structure proposed for **6** as 11β -hydroxy-1,2-dihydroisowalsuranolide.

Compound 7 was obtained as colorless needles (CHCl₃), and its molecular formula, $C_{26}H_{32}O_9$, was established from the HREIMS peak at m/z 488.2041 [M]⁺ (calcd 488.2046),

Journal of Natural Products

Article

Table 2. 13C NMR Spectroscopic Data of Compounds 1-9

position	1^a	2^{b}	3^a	4^{b}	5 ^a	6 ^a	7^c	8 ^a	9 ^d
1	154.1	154.1	154.1	154.3	154.0	36.2	71.1	81.2	158.2
2	127.5	127.5	127.6	127.4	127.6	33.6	45.0	38.8	125.3
3	204.4	204.4	204.4	204.5	204.4	214.9	214.9	214.1	203.5
4	49.5	49.4	49.5	49.4	49.5	48.8 ^e	49.0	48.7	41.0
5	134.1	134.0	134.2	133.8	134.0	140.0	138.4	135.6	48.
6	144.0	144.0	144.0	144.0	144.1	142.9	145.3	145.1	69.
7	199.1	199.0	199.0	199.1	198.9	199.5	199.6	199.3	73.
8	47.5	47.4	47.5	47.5	47.4	47.0	46.8	46.67	44.
9	46.0	45.8	46.1	45.6	46.1	48.8 ^e	40.4	40.2	41.
10	41.66	41.63	41.7	41.6	41.6	40.1	45.5	44.9	41.
11	66.5	66.4	66.9	67.0	66.4	66.1	66.3	66.3	63.
12	47.2	47.0	47.6	47.4	46.5	46.7	46.5	46.72	42.
13	41.68	41.60	41.8	42.0	42.0	42.1	42.2	42.2	41.
14	69.6	69.6	69.8	69.5	69.4	69.7	70.0	69.8	71.
15	56.5	56.3	56.6	56.9	56.2	56.5	56.6	56.4	56.
16	31.8	31.7	32.5	29.0	31.1	31.2	31.1	31.1	30.
17	43.3	43.3	45.2	48.9	45.4	45.4	45.4	45.3	42.
18	22.9	22.9	22.9	23.2	23.0	23.2	22.9	23.0	20.
19	26.7	26.7	26.7	26.6	26.7	17.9	18.1	17.7	24.
20	133.3	138.1	144.9	82.3	170.7	170.8	170.8	170.9	169.
21	174.6	171.6	109.7	111.0	100.3	100.4	100.3	100.4	99.
22	149.0	146.5	127.7	79.1	120.0	120.0	119.9	119.9	119.
23	71.2	103.2	107.3	112.6	171.5	171.6	171.6	171.7	170.
28	27.6	27.6	27.7	27.6	27.6	25.0	25.0	24.6	31.
29	22.0	22.0	22.0	21.8	22.0	21.5	22.1	21.9	20.
30	23.6	23.6	23.5	23.8	23.6	24.0	24.1	24.1	21.
OMe-1								57.2	
OAc-7									170.
									20.
OAc-11									169.
									21.
OMe-21			55.6	55.2					
OMe-23		56.4	53.2	56.3					

^aRecorded in C_5D_5N at 125 Hz. ^bRecorded in C_5D_5N at 150 Hz. ^cRecorded in C_5D_5N at 100 Hz. ^dRecorded in DMSO- d_6 at 100 Hz. ^eOverlapped by other signal.

showing 16 mass units more than that of compound **6** (Tables 2 and 3). The ^1H and ^{13}C NMR spectroscopic data observed for 7 were similar to those of compound **6**. However, signals for CH₂-1 (δ_{H} 2.35 and 1.89; δ_{C} 36.2) and CH₂-2 (δ_{H} 2.85 and 2.69; δ_{C} 33.6) were replaced by proton signals at δ_{H} 4.68, 3.21, and 3.14 and carbon signals at δ_{C} 71.1 and 45.0, which suggested that 7 is either a 1- or 2-hydroxy derivative of **6**. The HMBC correlations H-1/C-3, H-9/C-1, and H₃-19/C-1 indicated the hydroxy group is at C-1, and the ROESY correlation H-1/H₃-19 suggested that the hydroxy group is α -oriented. Thus, 7 was determined as 1α ,11 β -dihydroxy-1,2-dihydroisowalsuranolide.

Compound 8 was obtained as colorless needles (CHCl₃), and its HREIMS displayed a molecular ion peak at m/z 502.2205 [M]⁺ (calcd 502.2203), which corresponded to a molecular formula of $C_{27}H_{34}O_{9}$, representing 14 mass units more than that of compound 7. The 1D NMR spectroscopic data of 8 (Tables 2 and 3) were almost identical to those of compound 7, with the only difference being the presence of an additional methoxy group. The downfield shift of signals for the oxymethine ($\delta_{\rm C}$ C-1, from 71.1 to 81.2) suggested that this methoxy group is located at C-1, which was further supported by the HMBC correlations from OCH₃-1 ($\delta_{\rm H}$ 3.34, s) to C-1 ($\delta_{\rm C}$ 81.2) and H-1 ($\delta_{\rm H}$ 3.83, d, J = 6.1 Hz) to OCH₃-1 ($\delta_{\rm C}$

57.2). The ROESY correlation H-1/H₃-19 suggested that the methoxy group is α -oriented. Compound 8 was therefore established as 11β -hydroxy- 1α -methoxy-1,2-dihydroisowalsuranolide.

Compound 9 was obtained as a white, amorphous powder, and its HREIMS displayed a molecular ion peak at m/z558.2461 [M]+ (calcd 558.2465), corresponding to the molecular formula C₃₀H₃₈O₁₀. Comparison of the NMR spectroscopic data of 9 (Tables 2 and 3) with those of 5 showed that signals for the α -hydroxy- α , β -unsaturated ketone group were absent, whereas those for three methines ($\delta_{\rm H}$ 5.30, dd, J = 12.4, 2.5 Hz; 4.775, m; 4.770, m; $\delta_{\rm C}$ 69.8, 73.7, 63.6) and two acetoxy groups ($\delta_{\rm H}$ 2.10, s; 1.94, s; $\delta_{\rm C}$ 170.1, 20.9; 169.6, 21.0) were observed. These observations suggested 9 to be a 5,6,7-trihydrodiacetate derivative of 5. Further 2D NMR spectroscopic data analysis (Figures S59-S62, Supporting Information) not only confirmed this assignment but allowed the placement of the two acetoxy groups at C-7 and C-11, respectively, via HMBC correlations of H-7/CH₃CO-7 ($\delta_{\rm C}$ 170.1) and H-11/CH₃CO-11 (δ_C 169.6). The strong ROESY correlation between H-11/H-9 suggested H-11 to be α oriented, while the ROESY correlations of H-6/H₃-19 and H- $7/H_3$ -30 indicated that H-6 and H-7 are β -oriented. Thus, 9

Journal of Natural Products Article

Table 3. ¹H NMR Spectroscopic Data of Compounds 6-9

	•	-	_	
	6 ^a	7^b	8 ^a	9 ^c
proton position	(mult., J in Hz)	(mult., <i>J</i> in Hz)	(mult., J in Hz)	(mult., <i>J</i> in Hz)
1α	1.89, m			7.55, d (10.2)
1β	2.35, dd (13.2, 9.6)	4.68, m	3.83, d (6.1)	
2α	2.85, dd (18.8, 9.2)	3.14, m	3.02, d (18.9)	5.93, d (10.2)
2β	2.69, dd (18.8, 9.6)	3.21, m	2.87, dd (18.9, 6.1)	
5				2.43, m
6				5.30, dd (12.4, 2.5)
7				4.775, m
9	2.56, s	3.74, br s	3.45, s	2.29, br s
11	4.92, m	5.05, m ^d	4.92, d (6.0)	4.770, m
12α	2.23, m	2.20, m	2.33, dd (14.5, 6.0)	2.38, m
12β	2.75, m	2.70, m	2.80, d (14.5)	1.68, m
15	4.09, s	4.13, m	4.11, s	3.33, m
16α	2.07, m	2.06, m	2.06, dd (13.3, 10.0)	1.86, m
16β	2.16, m	2.15, m	2.14, dd (13.3, 6.2)	1.91, m
17	3.25, m	3.25, m	3.27, dd (10.0, 6.2)	2.41, m
18	1.02, s	1.07, s	1.07, s	0.92, s
19	1.61, s	1.67, s	1.58, s	1.46, s
21	6.44, s	6.27, s	6.47, s	5.96, s
22	6.10, s	6.03, s	6.08, s	6.01, s
28	1.77, s	2.11, s	1.89, s ^e	1.16, s
29	1.85, s	1.95, s	1.89, s ^e	1.05, s
30	1.74, s	1.82, s	1.77, s	1.34, s
OMe-1			3.34, s	
OAc-7				2.10, s
OAc-11				1.94, s

^aRecorded in C_5D_5N at 500 Hz. ^bRecorded in C_5D_5N at 400 Hz. ^cRecorded in DMSO- d_6 at 400 Hz. ^dOverlapped by solvent signal. ^eOverlapped by other signal.

was established structurally as depicted and was named yunnanolide B.

Compound 10 was isolated as an amorphous powder, with its molecular formula determined to be $C_{30}H_{52}O_4$ on the basis of the HREIMS data obtained. The ¹H and ¹³C NMR spectra (Table 4) showed this compound to have five tertiary methyl groups ($\delta_{\rm H}$ 0.90, 1.00, 1.66, 1.12, and 1.24), one secondary methyl group ($\delta_{\rm H}$ 1.02), two cyclopropylmethylene protons $(\delta_{\rm H} \ 0.31, \ {\rm d}, \ J = 3.5 \ {\rm Hz}; \ 0.54, \ {\rm d}, \ J = 3.5 \ {\rm Hz}), \ {\rm and \ two \ typical}$ upfield quaternary carbons (C-9, $\delta_{\rm C}$ 20.3; C-10, $\delta_{\rm C}$ 26.9). These observations indicated that 10 is a cycloartane triterpenoid. Detailed comparison of its NMR data with those of (24S)-25methoxycycloartane-3β,24-diol⁶ suggested compound 10 to be its 26-hydroxy analogue. This was supported by the HMBC correlations (Figure 1A) of H₂-26/C-24, H₃-27/C-26, and H-24/C-26. Observation of a strong ROESY correlation between H₃-27 and H-24 and the absence of any ROESY correlation between H₂-23 and H-26 in its preferred configuration suggested the relative stereochemistry as 24S* and 25R* (Figure 1B1 and B2). This inference was further supported by comparing its ¹H NMR data (in CDCl₃; Figure S71, Supporting Information) for H-24 and H₂-26 [ca. $\delta_{\rm H}$ 3.82 (d, J=11.1 Hz, 1H), 3.46 (m, 2H)] with those of a triterpenoid triol 24S,25R

Table 4. ¹H and ¹³C NMR Spectroscopic Data (500 and 125 MHz, C₅D₅N) for Compound 10

position	$\delta_{ m H}$ (mult., $\it J$ inHz)	$\delta_{ m C}$	position	$\delta_{ m H}$ (mult., $\it J$ in Hz)	$\delta_{ m C}$
1α	1.54, m	32.8	16α	1.97, m	28.9
1β	1.25, m		16β	1.68, m	
2α	2.00, m	28.9	17	1.00, s ^b	53.3
2β	1.36, m		18	1.00, s ^b	18.8
3	3.55, dd (4.5, 11.5)	78.3	19a	0.54, d (3.5)	30.4
4		41.5	19b	0.31, d (3.5)	
5	1.32, m	47.8	20	1.57, m	36.8
6α	1.59, m	21.8	21	1.02 ^c	19.0
6β	0.79, m		22a	1.82, m	34.5
7α	1.06, m	26.7	22b	1.73, m	
7β	1.30, m		23a	1.99, m	31.6
8	1.49, dd (4.6, 12.3)	48.5	23b	1.89, m	
9		20.3	24	4.19, m	76.6
10		26.9	25		75.1
11α	2.02, m	27.0	26a	4.32, d (10.6)	69.5
11β	1.14, m		26b	4.13, d (10.6)	
12	1.61, m ^a	33.6	27	1.66, s	20.6
13		45.7	28	1.24, s	26.6
14		49.4	29	1.12, s	15.3
15α	1.27, m	36.2	30	0.90, s	19.9
15β	2.15, m				

 a Double protons. b Overlapped by other signal. c Signal partially obscured.

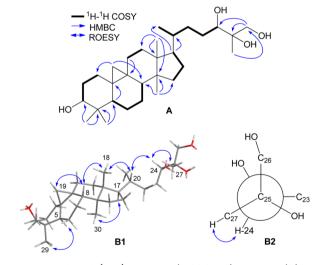


Figure 1. Selected $^1H-^1H$ COSY (bold bond), HMBC (A), and ROESY (B1 and B2) correlations of 10.

(or 24*R*,25*S*) isomer [ca. $\delta_{\rm H}$ 3.83 (d, J = 11.2 Hz, 1H); $\delta_{\rm H}$ 3.48 (m, 2H)] that possesses a similar ring D and is a side chain [for the 24*S*,25*S* (or 24*R*,25*R*) isomer]. However, the relevant signals for **10** appeared at ca. $\delta_{\rm H}$ 3.65 (d, J = 11.2 Hz, 1H), 3.49 (d, J = 11.2 Hz, 1H), and $\delta_{\rm H}$ 3.55 (1H).⁷ Compound **10** was therefore determined to be (24*S**,25*R**)-cycloartane-3 β ,24,25,26-tetrol.

Compounds 3, 5, 6, 7, 9, and 10 were obtained in sufficient amounts to be evaluated for their cytotoxic activity against human myeloid leukemia (HL-60), hepatocellular carcinoma (SMMC-7721), lung cancer (A-549), breast cancer (MCF-7), colon cancer (SW480), and human bronchial epithelial (BEAS-2B) cell lines. Of the substances tested, only compounds 3 and

Journal of Natural Products Article

5 exhibited potent cytotoxicity against the five human tumor cell lines, with IC₅₀ values in the range 2.2–4.2 μ M (Table 5).

Table 5. Cytotoxic Activity (IC $_{50}$ μ M) of Selected Isolated Compounds for Cancer Cell Lines

compound	HL-60	SMMC-7721	A-549	MCF-7	SW480	BEAS-2B
3	3.6	2.4	3.7	4.2	3.5	5.0
5	3.1	2.2	2.6	3.9	2.4	9.4
cisplatin	1.9	5.3	8.7	>10	>10	>10

■ EXPERIMENTAL SECTION

General Experimental Procedures. Melting points were obtained on an X-4 digital micromelting point apparatus and are uncorrected. Optical rotations were obtained with a JASCO P-1020 polarimeter. UV spectra were measured with a Shimadzu UV-2401A instrument. IR spectra (KBr) were determined on a Bruker Tensor-27 infrared spectrometer. 1D and 2D NMR spectra were recorded on Bruker AM-400, Bruker DRX-500, and Bruker Avance III 600 spectrometers with TMS as an internal standard. EIMS and HREIMS were recorded on an AutoSpec Premier P776 instrument, while ESIMS were measured with a Finnigan MAT 90 mass spectrometer. Semipreparative HPLC was carried out using a Waters system consisting of a 600 pump and a 2996 photodiode array detector. Silica gel (200-300 mesh, Qingdao Marine Chemical Factory, Qingdao, People's Republic of China), Sephadex LH-20 gel (40-70 μm, Amersham Pharmacia Biotech AB, Uppsala, Sweden), and MCI gel (CHP20/P120, 75-150 μm, high-porous polymer, Mitsubishi Chemical Corporation, Tokyo, Japan) were used for column chromatography.

Plant Material. The leaves and twigs of *W. yunnanensis* were collected from Xishuangbanna Tropical Botanical Garden (XTBG), Chinese Academy of Science (CAS), Mengla Country, Yunnan Province, People's Republic of China, in October 2012 and were identified by Chun-Fen Xiao (XTBG, CAS). A voucher specimen (no. 2012676) was deposited in the herbarium of XTBG.

Extraction and Isolation. The air-dried, powdered plant material (5.0 kg) was extracted three times (each for 7 days) with EtOH-H₂O (95/5, v/v, 30 L) at room temperature. Removal of solvent of the combined extracts under a vacuum afforded a crude residue (300 g). The residue was then suspended in H₂O (2 L) and partitioned with petroleum ether, EtOAc, and n-BuOH, successively. The EtOAcsoluble fraction (100 g) was subjected to silica gel column chromatography (CC) (MeOH-CHCl₃ from 0/1 to 1/1) to produce seven fractions (1-7). Fr. 2 (19.8 g) was applied to an MCI gel column (MeOH-H₂O from 3/7 to 4/1) to yield five major fractions (2A-2E). Filtration of the precipitate from Fr. 2A (150 mg) yielded 10 (80 mg). Fr. 2C (500 mg) was chromatographed by Sephadex LH-20 CC, eluted with MeOH-H₂O (from 2/3 to 4/1) to give Fr. 2C1 (15 mg), which was further purified by semipreparative HPLC (MeOH-H $_2$ O from 3/7 to 3/2) to yield 3 (6 mg). Fr. 3 (11.6 g) was separated over an MCI column eluted with MeOH-H₂O (from 2/3 to 4/1) to give six major fractions (3A-3F). The precipitate from Fr. 3A (210 mg) yielded 9 (100 mg). Fr. 3B (1 g) was applied to a silica gel column eluted with petroleum ether-acetone (from 1/0 to 2/1) to give 5 (10 mg) and subfractions 3A1 (50 mg) and 3A2 (15 mg). Subfractions 3A1 and 3A2 were further purified by Sephadex LH-20 CC (MeOH-H₂O from 3/7 to 3/2) and semipreparative HPLC (CH₃CN-H₂O from 2/3 to 7/3) to yield 2 (2 mg), 6 (8 mg), 7 (6 mg), and 8 (2 mg). Fr. 3C (20 mg) and 3D (55 mg) were purified initially by Sephadex LH-20 CC (MeOH-H₂O from 1/4 to 1/1) and then by semipreparative HPLC (CH₃CN-H₂O from 1/4 to 13/7) to yield respectively 1 (6 mg) and 4 (3 mg).

Walsuranolide B (1): colorless needles (CHCl₃); mp 128–130 °C; $[\alpha]^{27}_{\rm D}$ –3.7 (c 0.3, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε) 203 (4.20) nm; IR (KBr) $\nu_{\rm max}$ 3426, 2935, 1753, 1679, 1628, 1451, 1352, 1251, 1122,

1092, 1054, 1035, 960, 756 cm⁻¹; 1 H and 13 C NMR data, see Tables 1 and 2; HREIMS m/z 454.1986 [M] $^{+}$ (calcd for $C_{26}H_{30}O_{7}$, 454.1992).

11β-Hydroxy-23-O-methylwalsuranolide (2): colorless needles (CHCl₃); mp 115–117 °C; $[\alpha]^{27}_{\rm D}$ –2.1 (c 0.1, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε) 213 (4.01), 277 (3.84) nm; IR (KBr) $\nu_{\rm max}$ 3442, 2924, 1767, 1631, 1456, 1383, 1260, 1095, 1035 cm⁻¹; 1 H and 13 C NMR data, see Tables 1 and 2; HREIMS m/z 484.2105 [M]⁺ (calcd for C₂₇H₃₂O₈, 484.2097).

Yunnanolide A (3): colorless needles (CHCl₃); mp 136–138 °C; $[\alpha]^{27}_{\rm D}$ –32.1 (*c* 0.1, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε) 203 (4.05), 276 (3.13) nm; IR (KBr) $\nu_{\rm max}$ 3428, 2925, 1632, 1454, 1379, 1102, 1035 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HREIMS m/z 500.2413 [M]⁺ (calcd for $C_{28}H_{36}O_{8}$, 500.2410).

Yunnanol A (4): colorless needles (CHCl₃); mp 168–170 °C; $[\alpha]^{28}_{\rm D}$ –24.5 (*c* 0.1, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε) 211 (3.89), 278 (3.80) nm; IR (KBr) $\nu_{\rm max}$ 3424, 2931, 1679, 1384, 1124, 1034, 992 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HREIMS m/z 534.2467 [M]⁺ (calcd for C₂₈H₃₈O₁₀, 534.2465).

11β-Hydroxyisowalsuranolide (5): crystalline solid (CHCl₃); mp 126–128 °C; $[\alpha]^{27}_{\rm D}$ –35.5 (*c* 0.1, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε) 220 (4.23), 278 (3.95) nm; IR (KBr) $\nu_{\rm max}$ 3426, 2935, 1759, 1678, 1355, 1254, 1122, 1035, 950, 908 cm⁻¹; 1 H and 13 C NMR data, see Tables 1 and 2; HREIMS m/z 470.1951 [M]⁺ (calcd for C₂₆H₃₀O₈, 470.1941).

11β-Hydroxy-1,2-dihydroisowalsuranolide (6): colorless needles (CHCl₃); mp 130–132 °C; $[\alpha]^{26}_{D}$ –55.7 (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 209 (4.08), 278 (3.86) nm; IR (KBr) ν_{max} 3431, 2925, 1746, 1703, 1679, 1631, 1384, 1253, 1135, 1034 cm⁻¹; ¹H and ¹³C NMR data, see Tables 2 and 3; HREIMS m/z 472.2081 [M]⁺ (calcd for C₂₆H₃₂O₈, 472.2097).

 1α ,11β-Dihydroxy-1,2-dihydroisowalsuranolide (7): colorless needles (CHCl₃); mp 120–122 °C; [α]²⁷_D –39.1 (c 0.1, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε) 214 (3.59), 279 (3.43) nm; IR (KBr) $\nu_{\rm max}$ 3441, 2922, 2852, 1632, 1384 cm⁻¹; ¹H and ¹³C NMR data, see Tables 2 and 3; HREIMS m/z 488.2041 [M]⁺ (calcd for C₂₆H₃₂O₉, 488.2046).

11β-Hydroxy-1α-methoxy-1,2-dihydroisowalsuranolide (8): colorless needles (CHCl₃); mp 135–137 °C; $[\alpha]^{27}_{\rm D}$ –11.0 (c 0.1, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε) 210 (4.11), 279 (3.94) nm; IR (KBr) $\nu_{\rm max}$ 3424, 2927, 1761, 1630, 1384, 1092, 1034 cm⁻¹; ¹H and ¹³C NMR data, see Tables 2 and 3; HREIMS m/z 502.2205 [M]⁺ (calcd for C₂₇H₃₄O₉, 502.2203).

Yunnanolide B (9): white, amorphous powder; $[\alpha]^{26}_{\rm D}$ +105.6 (*c* 0.1, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε) 221 (4.47) nm; IR (KBr) $\nu_{\rm max}$ 3431, 2921, 1767, 1738, 1648, 1379, 1256, 1226, 1120, 1045 cm⁻¹; $^{\rm 1}{\rm H}$ and $^{\rm 13}{\rm C}$ NMR data, see Tables 2 and 3; HREIMS m/z 558.2461 [M]⁺ (calcd for C₃₀H₃₈O₁₀, 558.2465).

(245*,25R*)-Cycloartane-3β,24,25,26-tetrol (10): white, amorphous powder; $[α]^{26}_D$ +35.3 (c 0.1, MeOH); IR (KBr) $ν_{max}$ 3430, 2966, 2936, 2866, 1635, 1449, 1377, 1337, 1287, 1121, 1081, 1043, 1021, 995, 916, 879 cm⁻¹; 1 H and 13 C NMR data (C_5D_5 N), see Table 4; 1 H NMR (CDCl₃, 600 MHz) δ 3.82 (1H, d, J = 11.1 Hz, H-26a), 3.47 (1H, m, H-24), 3.46 (1H, d, J = 11.1 Hz, H-26b), 3.27 (1H, m, H-3), 1.99 (2H, m, H-11), 1.09 (3H, s, H₃-27), 0.963 (3H, s, H₃-18), 0.96 (3H, s, H₃-28), 0.89 (3H, s, H₃-30), 0.88 (3H, d, J = 6.6 Hz, H₃-21), 0.80 (3H, s, H₃-29), 0.55 (1H, d, J = 3.9 Hz, H-19a), 0.32 (1H, d, J = 4.1 Hz, H-19b); HREIMS m/z 476.3867 [M]⁺ (calcd for $C_{30}H_{52}O_4$, 476.3866).

Cytotoxicity Assays. The MTS method was used for assessing the cytotoxicity of the compounds against five tumor cell lines (HL-60 human myeloid leukemia, SMMC-7721 hepatocellular carcinoma, A-549 lung cancer, MCF-7 breast cancer, and SW480 colon cancer). All cells were cultured in RPMI 1640 medium containing 10% fetal bovine serum and 100 U/mL penicillin/streptomycin in a humidified incubator in a 5% CO $_2$ atmosphere at 37 °C. Then, 100 μ L of adherent cells was seeded into each well (1 \times 10⁴ cells/well) of 96-well cell culture plates and allowed to adhere for 12 h before test drug addition. Each tumor cell line was exposed to a test compound at concentrations of 0.064, 0.32, 1.6, 8, and 40 μ M in DMSO in triplicate for 48 h, with cisplatin as the positive control. After 48 h incubation, 20 μ L of MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-

Journal of Natural Products Article

phenyl)-2-(4-sulfophenyl)-2*H*-tetrazolium] solution was added to each well, which were incubated for another 4 h to give a formazan product. Then 100 μ L of 20% SDS was added to each well and incubated 12 h at room temperature for the formazan product to dissolve completely. The OD value of each well was measured at 490 nm using a Biorad 680 instrument. The IC $_{50}$ value of each compound was calculated by the Reed and Muench method.

ASSOCIATED CONTENT

S Supporting Information

This material (HREIMS, 1 H and 13 C NMR, and 2D NMR spectra of limonoids (1–9) and (24S*,25R*)-cycloartane-3 β ,24,25,26-tetrol (10)) is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*(S.-G. Liao) Tel: +86-851-6908468. Fax: +86-851-6908468-0. E-mail: lshangg@163.com.

*(Y.-K. Xu) Tel: +86-691-8713169. Fax: +86-691-871-3061. E-mail: xyk@xtbg.ac.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

CAS 135 program (XTBG-F02), NSFC-U1302222, and Ethnobotanical Investigation of Plants for Industrialization in Southwest China (SQ2012FY4910027) are gratefully acknowledged.

REFERENCES

- (1) Tan, Q. G.; Luo, X. D. Chem. Rev. 2011, 111, 7437-7522.
- (2) (a) Luo, X. D.; Wu, S. H.; Ma, Y. B.; Wu, D. G. J. Nat. Prod. 2000, 63, 947-951. (b) Yin, S.; Wang, X. N.; Fan, C. Q.; Liao, S. G.; Yue, J. M. Org. Lett. 2007, 9, 2353-2356. (c) Jiang, J. H.; Pan, Y. Q.; Ma, Y. J.; Chen, Y. G. J. Anhui Agric. Sci. 2008, 36, 14142-14143. (d) Zhou, Z. W.; Yin, S.; Zhang, H. Y.; Fu, Y.; Yang, S. P.; Wang, X. N.; Wu, Y.; Tang, X. C.; Yue, J. M. Org. Lett. 2008, 10, 465-458. (e) Awang, K.; Yusoff, M.; Mohamad, K.; Chong, S. L.; Ng, S. W. Acta Crystallogr. E 2009, 65, O1166-U3323. (f) Rao, M. S. A.; Suresh, G.; Yadav, P. A.; Prasad, K. R.; Nayak, V. L.; Ramakrishna, S.; Rao, C. V.; Babu, K. S. Tetrahedron Lett. 2012, 53, 6241-6244. (g) Sichaem, J.; Aree, T.; Khumkratok, S.; Jong-aramruang, J.; Tip-pyang, S. Phytochem. Lett. 2012, 5, 665-667. (h) Han, M. L.; Zhang, H.; Yang, S. P.; Yue, J. M. Org. Lett. 2012, 14, 486-489. (i) Nugroho, A. E.; Okuda, M.; Yamamoto, Y.; Hirasawa, Y.; Wong, C. P.; Kaneda, T.; Shirota, O.; Hadi, A. H. A.; Morita, H. Tetrahedron 2013, 69, 4139-4145. (j) Han, M. L.; Shen, Y.; Wang, G. C.; Leng, Y.; Zhang, H.; Yue, J. M. J. Nat. Prod. 2013, 76, 1319-1327.
- (3) Chen, S. K.; Li, H.; Chen, B. Y. In Zhongguo Zhiwu Zhi; Science Press: Beijing, 1997; Vol. 43 (3), p 62.
- (4) Jiang, L. H. Chem. Nat. Compd. 2013, 48, 1013-1016.
- (5) Yang, M. H.; Wang, J. S.; Luo, J. G.; Wang, X. B.; Kong, L. Y. J. Nat. Prod. **2009**, 72, 2014–2018.
- (6) Ukiya, M.; Akihisa, T.; Yasukawa, K.; Kasahara, Y.; Kimura, Y.; Koike, K.; Nikaido, T.; Takido, M. *J. Agric. Food Chem.* **2001**, 49, 3187–3197.
- (7) Kennedy, E. M.; P'Pool, S. J.; Jiang, J. H.; Sliva, D.; Minto, R. E. J. Nat. Prod. **2011**, 74, 2332–2337.
- (8) Reed, L. J.; Muench, H. Am. J. Hyg. 1938, 27, 493-497.